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The Н-theorem for generalization of equations of chemical kinetics is proved. Important 

physical examples of such generalization: the discrete velocity models of the quantum kinetic 

equations (of the Uehling–Uhlenbeck equations) and the quantum Markoff process (the 

quantum random walk), are considered. The coincidence of time means with the Boltzmann 

extremals for Liouville equation’s type is proved. 

It is shown, that «the Boltzmann procedure» of variation of entropy, leads to «the 

Boltzmann formula», [1] is applicable to both the Boltzmann equation and its discrete 

velocity models, as well as to the equation of continuity, and in the finite dimensional case for 

the Markoff processes and its non-linear generalizations of chemical kinetics’ type. 

Let U  is a linear operator in Hilbert space X , and the norm of U  is less than or equal 

to one. Then the theorem, called stochastic ergodic theorem (F. Riesz, see [2]), is valid. For 

each z  of the X  time means 
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converge strongly to an element  zPP CC   – the Cesaro average, when mn   tends to 

infinity. 

We define the Boltzmann extremal as an element BP , where the entropy reaches its 

conditional maximum. More precisely, we define a set of linear conservation laws XI  , 

Iu , if 

   uxuUx ,,   

For all Xx . Consider  xS  – a strictly concave (convex upwards) functional, not 

decreasing under the action U :    xSUxS   (it is an analog of entropy). Let zX  is a set of 

Xx  with the same constants of the linear conservation laws as for z : 

  IuuzxXxX z   allfor  0,, . Consider the conditional extremum problem: find out 

where  xSsup  is achieved on condition that zXx . Argument of functional  xS , that 

yields this conditional extremum, call  zPB  = (the Boltzmann extremal). 
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Theorem. Let S  is defined on zX , and if zX  is unrestricted, then   




xS

zXx
x
lim . 

Then: 

1) the solution of this conditional extremum problem exists into zX  and is unique; 

2) the Cesaro averages coincide with the Boltzmann extremals: 

   zPzP BC  . 

Example. The Liouville equation for discrete time for the M. Katz model [3, 4]. 

Consider the circle and n  equally spaced points on it (vertices of a regular inscribed 

polygon). Note some of their number: m  vertices. The set of them we label by S . In each of 

the n  points put the black or white ball. During each time unit, each ball moves one step 

counter-clockwise with the following condition: the ball going out from a point of the set S  

changes its color. If the point does not belong to S , the ball leaving it retains its color. 

We introduce the following notation. We number the points counter-clockwise from 1 

to n ; let p  is a number between 1 and n . 1p , if Sp ; 1p , if Sp .   1tp , 

if at the moment t  the ball in the point p  is black;   1tp , if at the moment t  the ball in 

the point p  is white. Directly from the model it is obtained: 
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We write the system (1) in vector form: 

    tt ηTη ˆ1  , (2) 

where         Tn tttt  ,,, 21 η , 
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The Liouville equation for (1) (and (2)) has the form: 

    tftf nn ;,,,1;,,, 1322121    . (3) 

For the Liouville equation (3) there is always the law of conservation of all states of the balls 

– vectors η :   consttf 
η

η; , where summation is over all possible vectors η  (the number 
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of them is equal to n2 ). Therefore, the entropy    
η

ηη tftf ;ln;  is bounded, if the constants 

of the linear conservation laws are fixed. It conserves on the solutions of (4). So the condition 

of the theorem is satisfied and time mean coincides with the Boltzmann extremal, although 

each system returns to its original state after a time n2  – each point changes its color after n2  

steps an even number of times: m2 . 

The Boltzmann extremal and the Cesaro average are determined by the linear 

conservation laws. Let us find out what they are and how many. As we have noted, a system 

after n2  steps returns to its original state. It may be that she repeatedly returned to its original 

state for the same period of time. At the same time it may be that it repeatedly returned to its 

original state for the same period of time. Therefore, the system, going through different 

states one at a time, will return at the first time in its original state after a number of steps, 

which is a divisor of the number n2 . The linear conservation law: 

      consttftftf n   ;;; 1210
ηηη  , corresponds to that the system at first time returns 

to its original state after k  steps: 0110
ηηηη  k . Thus, the problem boils down 

to counting the number of solutions of the equation ηTη
kˆ : there are no solutions for odd 

m  and  knНОДk , , and in other cases the number of them is  knНОД ,2 . 

Subtract from the number of solutions of equation ηTη
kˆ  for each of the divisors of k  

the number of states such that after the number of steps, equal to this divisor, the system at 

first time returns to its original state. If this number we divide by k , then we get a number of 

conservation laws corresponding to the fact that after k  steps the system returns to its original 

state the first time. 

Since the writing of the general formula is too cumbersome, then we write the answer 

for the example when 3

2

2 ppn  , then for even m  the number of the conservation laws 

число законов сохранения is equal to 
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and for odd m : 
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Let consider the system of equations: 

    
  

 







βα

α

β

α

β

fα
f

,

ii
i G

eK
dt

df ,~
 , ni ,,2,1  , (4) 

where  n ,,, 21 α  and  n ,,, 21 β  – vectors with integer-valued nonnegative 

components, and summation leads on certain finite set   of multiindexes  βα, , symmetric 

under permutations α  and β ;  f
α

β ,  fG  – given functions from  nfff ,,, 21 f , 

    0 ff
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If  f
α

β  is independent on f , then we have the system: 

  
  

 







βα

α

β

fα

,

ii
i G

eK
dt

df ,
 , ni ,,2,1  , (5) 

where α

β

α
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β KK
~

 . 

If in (5) 
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, then we have chemical kinetics’ system of equations [5]. The 

principle of detailed balance and the condition of dynamic equilibrium are considered in 

chemical kinetics [5, 6]. The latter is also named the principle of unitarity or the Stuckelberg–

Batishcheva–Pirogov condition [7, 8, 9]. 

For the system (4) the following generalization of the principle of detailed balance can 

be formulated. Let vector ξ  exists such, that for all reactions   βα,  the condition: 
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is fulfilled. 

Let define the generalization of the Stuckelberg–Batishcheva–Pirogov principle on the 

case of systems (5) in the following way. Let vector ξ  exists such, that it is a solution of the 

system of equations: 
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here α  is such, that   βα,  with some β . 

We prove the Н-theorem for systems (4) on conditions (6) and for systems (5) on 

conditions (7), and the Н-function (a functional of type of entropy, decreasing on non-

stationary solutions) is defined by the equation:       fξff ,GGH  . The Н-theorem for 
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the symmetrical case:     β

α
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β ff KK
~~

  , was considered [6]. 

Example. Random walk with two states and its generalizations. 

Markoff process with two states is described by the system of two equations: 
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quantum random walk with two states – by the system: 

 

   

   











,11

,11

12

2

121

1

2
2

21

1

212

2

1
1

ffKffK
dt

df

ffKffK
dt

df




 (9) 

and their generalization – by the system: 
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The system (8) represents a system of equations of chemical kinetics with one reaction of the 

form 21

1
2

SS
K

  and with return reaction to it 12

2
1

SS
K

 . While in the asymmetric case the system 

(9) is not a system of equations of chemical kinetics. The generalization of the condition of 

detailed balance, proposed in present work, is formulated for this example in this way: there is 

a vector  21,ξ  such that    21

1

212

2

1 11   KK . 

Nevertheless the problem of construction of the Н-function (that is decreasing 

functional with the proof of the Н-theorem) for the quantum random walks, for which the 

generalization of the principle of detailed balance (6) is not fulfilled, remains open. 

It is considered a new form of the H -theorem in researches of H. Poincare [10], V.V. 

Kozlov [4] and D.V. Treshchev [11]. It is valid for the Liouville equation and for its 

generalizations. The concept of the Boltzmann extremal works there also: we prove, that time 

means (the Cesaro averages) coincide with the Boltzmann extremals. And that makes the 

concept of the Boltzmann extremal generally mathematical and fundamental both as search 

method of stationary solutions of wide class of equations both linear of Liouville equation’s 

type and nonlinear, and as broad generalization of the concept of entropy. 
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